Brassinosteroids control root epidermal cell fate via direct regulation of a MYB-bHLH-WD40 complex by GSK3-like kinases

نویسندگان

  • Yinwei Cheng
  • Wenjiao Zhu
  • Yuxiao Chen
  • Shinsaku Ito
  • Tadao Asami
  • Xuelu Wang
چکیده

In Arabidopsis, root hair and non-hair cell fates are determined by a MYB-bHLH-WD40 transcription factor complex and are regulated by many internal and environmental cues. Brassinosteroids play important roles in regulating root hair specification by unknown mechanisms. Here, we systematically examined root hair phenotypes in brassinosteroid-related mutants, and found that brassinosteroid signaling inhibits root hair formation through GSK3-like kinases or upstream components. We found that with enhanced brassinosteroid signaling, GL2, a cell fate marker for non-hair cells, is ectopically expressed in hair cells, while its expression in non-hair cells is suppressed when BR signaling is reduced. Genetic analysis demonstrated that brassinosteroid-regulated root epidermal cell patterning is dependent on the WER-GL3/EGL3-TTG1 transcription factor complex. One of the GSK3-like kinases, BIN2, interacted with and phosphorylated EGL3, and EGL3s mutated at phosphorylation siteswere retained in hair cell nuclei. BIN2 phosphorylated TTG1 to inhibit the activity of the WER-GL3/EGL3-TTG1 complex. Thus, our study provides insights into the mechanism of brassinosteroid regulation of root hair patterning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of TTG1 and CPC-like MYB genes during Arabidopsis epidermal cell differentiation

The development of Arabidopsis thaliana epidermal cells includes the differentiation of trichomes and root hairs. The TRANSPARENT TESTA GLABRA 1 (TTG1) gene encodes a WD40 protein that induces trichome differentiation and reduces root hair formation in Arabidopsis. The CAPRICE (CPC) gene family includes CPC, ENHANCER OF TRY AND CPC1 (ETC1), ENHANCER OF TRY AND CPC2 (ETC2), and CPC LIKE MYB3 (CP...

متن کامل

Regulation of cell fate determination in plants

Building a multicellular organism, like a plant, from a single cell requires the coordinated formation of different cell types in a spatiotemporal arrangement. How different cell types arise in appropriate places and at appropriate times is one of the most intensively investigated questions in modern plant biology. Using models such as trichome formation, root hair formation, and stomatal devel...

متن کامل

The TTG1-bHLH-MYB complex controls trichome cell fate and patterning through direct targeting of regulatory loci.

A network of three classes of proteins consisting of bHLH and MYB transcription factors, and a WD40 repeat protein, TRANSPARENT TESTA GLABRA1 (TTG1), act in concert to activate trichome initiation and patterning. Using YFP-TTG1 translational fusions, we show that TTG1 is expressed ubiquitously in Arabidopsis leaves and is preferentially localized in the nuclei of trichomes at all developmental ...

متن کامل

Brassinosteroid-regulated GSK3/Shaggy-like kinases phosphorylate mitogen-activated protein (MAP) kinase kinases, which control stomata development in Arabidopsis thaliana.

Brassinosteroids (BRs) are steroid hormones that coordinate fundamental developmental programs in plants. In this study we show that in addition to the well established roles of BRs in regulating cell elongation and cell division events, BRs also govern cell fate decisions during stomata development in Arabidopsis thaliana. In wild-type A. thaliana, stomatal distribution follows the one-cell sp...

متن کامل

The bHLH genes GLABRA3 (GL3) and ENHANCER OF GLABRA3 (EGL3) specify epidermal cell fate in the Arabidopsis root.

The position-dependent specification of the hair and non-hair cell types in the Arabidopsis root epidermis provides a simple model for the study of cell fate determination in plants. Several putative transcriptional regulators are known to influence this cell fate decision. Indirect evidence from studies with the maize R gene has been used to suggest that a bHLH transcription factor also partic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2014